

Introduction to iKern

iKern is a tool for letter-fitting (spacing and kerning) fonts.

iKern is a mathematical model of the interaction between
separate generic shapes conceived for the task of letter-fitting.

iKern is a theory that describes possible ways of interaction that
could be used to calculate final sidebearings and kerning values.

Letter-fitting can be considered as the the sum of a set of
choices and a set of consequent repetitive procedures.

iKern isolates the set of choices and automates all the rest.
The set of choices is exposed in a way that could make sense
from a microtypographic point of view.

Choices are made by means of parameters. These parameters
tune the way the iKern engine executes the instructions foreseen
by the model.

This way, it is possible to test key combinations of letters and
immediately have a visual response.

Parameters get adjusted in an iterative way, and with visual
feedback, until the result thus achieved coincides with the one
anticipated.

This letter-fitting paradigma differs from the traditional one:
● sidebearings and kerning values are found rather than created

one by one;
● rhythm and texture in a typeface have to be designed at the

beginning rather than determined at the end of a (long)
process.

From this point of view iKern may be considered as an interface
for a system of global decisions where the machine is put in
charge of achieving:

● coherence: the initial choices are globally and indiscriminately
inherited by glyphs and kerning pairs;

● consistency: the same algorithms and the same parameters
produce both autospacing and autokerning;

● accuracy.

The speed of the process also allow to prepare different versions
to be evaluated making the whole process even more efficient.

Development of iKern began in 2002.

At that time I had completed the digitazion of the Fell Types and
had to begin with kerning.

My career in manual kerning lasted for only a few hours because
I quickly realized that it would have taken me years to kern 15
fonts.

So I thought about automation:

I was sure it would have been easy because I knew some math
models from structural analysis that seemed to me usable by
analogy.

I tried and failed. Tried variations on the theme and failed again.

Tried different ideas and failed again. For one year and a half.

Until I realized why I failed:

● I was trying to find an answer without knowing the question;

● I was trying to mathematically describe something I didn't
understand.

I needed a theory to base the model on. And there were no
serious theories around.

So I began to adopt a philosophical shifting:

Instead of thinking of letters moving in a static theater called
white space, I began to describe mechanisms I imagined
happening in a living entity called white space, disturbed by the
presence of static letters.

In the end, these turned out to be the mechanisms that moved
the letters from where they were to where I would have liked
them to be:

where the eye judges them to be correctly placed.

So iKern was conceived not as a substitute of the eye but as a
model based on the expectations of the eye. My eye.

An eye that probably wasn't trained too much at the time, but
that surely got some training in the years that followed.

Building a theory and a model at the same is like travelling
whitout a map.

A theory begins complex because it has to take into account
many phenomenons that seem unrelated. It has to end simple
because it has to become as much as possible general.

A model begins simple because ideas come simple but has to
become complex to be able to approximate as much as possible
the theory.

The complexity of a model is a function of the amount of
information that the theory can produce. The development of a
theory depends on the reach, accuracy and extent of the
experiments that a model makes possible.

It's a never-ending feedback, one needs to be clear about what
one is doing, and one needs to understand when to simplify and
when to complicate.

It's true in every creative field:

Ideas are born, grow and die generating new ideas.

It's a fundamental compass.

So iKern was born not as a description of the white space as a
geometric object – but as the description of a set of potential
events inside of it. Like a physical object.

This paradigm change can be described like this: The relative
geometric position of letters is not considered as a matter of
geometry. It is considered as merely being triggered by geometry.

This paradigm change became necessary because simple
geometry alone would have provided a very poor vocabulary for
describing the homegeneity of what is geometrically
dishomogeous:

the white space between letters of every possible different
shape.

I was more familiar with Continuum Mechanics and forces,
tensions, deformations, energy, ... which are concepts far more
powerful than distances and areas alone, and more appropriate
for modelling non-linearities.

I'm not saying that those are the only valid concepts that lead to
success.

I'm just saying that those were the words I learnt in my mother
tongue.

In 2004 I published a first version of the Fell Types reworked with
iKern and so I also went public with iKern itself.

In 2008 I began to officially offer my services.

In 2010 I left my job of engineer and became type engineer full
time.

Today I still keep on working on the develpment of iKern with a
new stable build every 1-2 weeks.

The service aspect is fundamental to iKern: it offers test cases
that bring new ideas.

Working on different shapes and styles, it is possible to make the
system more general.

iKern works not only with Latin, Cyrillic, Greek script fonts but
with fonts of any script whose letter-fitting is ruled by a concept
of white space.

I worked on Hebrew, Arabic, Armenian, Ethiopic, Inuktikut,
Glagolitic and various ancient scripts. Invented scripts too.

And the dialogue with different designers, every one of them
with a peculiar point of view, helps achieve generality more and
more.

A few notes on the iKern model and theory

Spacing and kerning happen at the same time.

The relative position of two letters is just one and it indissolubly
contains both spacing and kerning.

In iKern, there are concepts of portion of space that is owned by a
glyph and of compenetration space.

These are similar, related, but are not identical with final
sidebearing and kerning. (Sidebearings and kerning is just one
way of storing letter-fitting. It is just how current font formats
store letter-fitting.)

Spacing and kerning operations are performed in sequence but:

● The same set of parameters is used for both spacing and
kerning;

● The same algorithms are used for calculating sidebearing and
kerning values. In case of kerning, there are two facing
outlines. In case of spacing the other outline is virtual and
modeled as a distortion opportunely imposed on the medium
the white space is thought to be made of;

● During the spacing phase, sidebearing values are produced.
But this is the relatively less important happening:

when spacing, every side of the glyph is analyzed to extract
informations necessary for the kerning phase.

That's why iKern can only produce spacing and kerning together
and at the same time.

Anyway, applying a certain kerning strategy to a set of glyphs
spaced with a different one, would create kerning values mixed
with a component of attempted numerical corrections without
any possibility to separate them. And in very great quantity.

Kerning would try to get rid of spacing. Just like an immune
reaction. No matter how good the spacing may be.

In iKern there is congruence between spacing and kerning and
the number of kerning values eventually ends up being the
minimum possible.

Distributed as in a Gaussian bell centered on the zero. As a
continuous phenomenon.

The algorithms iKern is made of may be considered as part of
two separated subsystems:

● the first tries to optimize legibility;

● the second tries to optimize readability.

Legibility means separation of shapes. So that glyphs are more
recognizable. As a consequence, the white space must have the
ability to keep the glyphs separated.

Readability means equilibrium of shapes. The concept of
equilibrium implies a principle of symmetry: what happens to the
left has to be the same of what happens to the right because
every glyph has to appear to be centered in the middle of a
triplet. As a consequence, the white space must have the ability
to seem homogeneous.

The first subsystem separates the glyphs.

It does so by trying to impose a certain distance between every
point in every direction in the boundary outlines.

This distance is the main parameter in iKern and it's called Width.

The mechanism tries to move points towards each other if their
distance is larger than the expected Width, and tries to move
points away from each other if their distance is smaller than the
expected Width.

The medium that the white space may be thought to be made of
is a non-linear elastic body which is subject to distortion.

This subsystem is called Proximity model.

The second subsystem balances spaces.

On the left and right of every glyph and between every pair of
glyphs.

The aim is to induce a perceived homogeneity of the various white
space islands between the letters.

Object of model, in this case, it's not only a set of mechanisms
that may do that.

It's also the definition of a way to evaluate a difference between
perception and measure. Between optical space and geometric
space.

Generally, the Proximity Model will create uneven white spaces
because all the possible shapes of the letters will compenetrate
one each other in different ways and of different amounts.

These spaces need to be balanced.

And if the white space gets distorted by the presence of the
glyphs then the space may be considered as not uniform because
not made anymore of parallel lines like the warp and weft of a
flat fabric.

It can be imagined that the boundary outlines project themselves
in the white space forming structures of forces, inducing tensions
and deformations. The shape propagates itself in the white space
in form of perturbation.

The concept of non-uniformity of a space propagating
perturbations may be combined with a concept of distribution of
densities.

The medium, the white space, may be thought of consisting of
air.

Because balanced as a whole. Because being dense. Because
moving.

This subsystem is called Air model.

Air may reflow. The same amount of air may occupy different
areas depending on the density.

So a first possible way to model perception is:

● redistribution of geometric spaces;

● Definition of a different way to measure the space:

an optical space.

Perturbations break the inner symmetry of the uniform space
creating the substrate for something that can happen.

The combined perturbations in a white space formed by two
different glyphs create a new whole configuration.

A configuration may be stable or not.

Glyphs may move to resolve instability.

A resolution can only happen in the direction of an increased
symmetry.

This is a possible second way to model perception.

The non uniformity in the white space may also be considered as
the fingerprint of the shape that generated it. Because every one
is as unique as its shape.

From this point of view, the white space may be thought of as a
medium that not only accomplishes a function but also carries
information itself.

[Gestal psychology tells us that perception may be the result of
an efficient simplification of so-called reality so that structures
may emerge from an otherwise unmanageable amount of data.
Black and white may consequently be seen also as a whole
sometimes. A whole that is more than the sum of the parts. This
more would just be information.

I like to think that the fingerprint information may have some
kind of relation or correspondence with that.]

In any case, the study of the (non) uniformity of the white space
allows to extract the information that makes the mechanisms
work. The fuel to the engine.

There's always a recursive feedback in the inner working of the
mechanisms:

 Actions ← ← ← ← ← ↑
↓ ↑

Effects ↑
↓ ↑

New configuration ↑
↓ ↑

New information ↑
↓ ↑

Calibration → → → ↑

With the proper information, mechanisms not only describe
behaviours, but also approximate the transition of behaviours
even for minimal variations in the geometry of the outlines.

Instability and recursion become the foundation for non-linearity.

Context and Compromise
iKern can produce an infinite number of different letter-fitting
configurations. What makes them different is the context.

Context, microtypographically speaking, may be defined as a
point in a bidimensional diagram with two axes: Distance of
observation and Choice of a specific relation between legibility
and readability.

The distance of observation is a measure of how the white space
between the letters is seen by an observer.

The larger the distance, the more the white space is seen as a
whole, so that its predominat feature is its extension.

The smaller the distance, the more the boundaries are
detectable, so that its predominat feature becomes the minimum
distance between the letters.

Distance of observation may be microtypographically defined by
the pair: Text & Display.

The context space may also be converted to a microtypographical
space where the axes may be: tight-loose and rhythmic-textured.

Rhythm, i.e. the beat of the white spaces while reading, is tightly
connected to the concept of equilibrium: if the setting is large
enough so that letters may not interfere one each other, rhythm
and equilibrium would exactly be the same feature.

Texture refers to a well-ordered, compact sequence of well-
recognizable objects.

But as tightness comes into play, reducing the breathing white
space and triggering interactions between letters, things change:

to preserve rhythm, letters may collide;

to preserve texture, letters may compenetrate more.

The tighter the setting is, the more readability and legibility need
to be sacrified to pass from an ideal to a working setting.

Eventually, even kerning may be a side effect of this process.

The tighter the setting is, the larger the amount of kerning is,
being a consequence of the need for more compenetration.
Compenetration is required to prevent that the glyphs may come
too near one each other.

Conversely, the looser the setting is, the less kerning is required.
If the distance between letters is sufficient, they do not
interfere, they are not trying to enter the space of their neighbor.

So kerning may indirectly be a measure of the interaction.

The choice of a context is, in general, a compromise.

Fitting decisions are, more or less, the choice of a compromise
that minimizes the damage.

Here, different points of view come into play. Everyone may have
a different strategy.

In the end iKern is a tool that helps finding the perfect equilibrium
as well as disrupting it in a controlled way.

My personal strategy is to consider all the possible pairs inside
every possible triplet, quadruplet or larger sequence, and having
them to work averagely the same in all the cases.

It is better to have good combinations throughout, even if sub-
optimal, than some optimal combinations alongside others with
visible flaws.

I call this strategy:

A font is not a logo

Operatively

In a font there are different groups of glyphs that require to
share the same input parameters. For example: lowercase letters
may form a group, uppercase letters another one, small caps yet
another one, …

Ikern uses different sets of input data for every group.

I talked about the engine and about the driving, but still haven't
talk about the car. →

Glyphs can be recognized in different ways: by index, name, or
Unicode codepoint. Index is not reliable because the glyph set
may be re-sorted. A Unicode codepoint may not be assigned to
every glyph. So iKern relies on names. But not the real names.

iKern uses working names that are mapped to real names using
Unicode codepoints or the names themselves via dictionaries.

General dictionaries' entries can be overriden or added locally for
every font or family of fonts.

Names are analyzed to create associations between glyphs that
share the same name but not necessarily the same suffixes. Like
in 'a' and 'a.smcp'. This way, information e.g. about base glyph,
composition or type can be gathered from the Unicode database.

Pair lists are built using standard lists and expanding them to
glyphs having a suffix in the name in an opportune and
programmable way.

 That's why it is important that:

● Unicode codepoints are correctly stored whenever possible;

● the use of suffixes in glyph names is consistent.

There's no need to set classes before letter-fitting a font.

Classes would be overriden. In iKern, classes are defined using
databases and/or automatically.

Whether glyphs get included in a class or not is decided by
superimposing outlines and, based on a variable that defines a
tolerance, how much they deviate.

iKern produces 2 kinds of output data:
● a pair consisting of a TrueType font for the sidebearing values

and an AFDKO compliant 'kern' feature including class
definitions.

● a proprietary format that contains the usual data and also the
variation of sidebearing for every glyph.

These data can be imported into new fonts. There are different
ways to assign sidebering values: directly, preserving the width,
using variations, ... So it is possible, for example:

● to make grades. Every font is spaced but only the median one
kerned. New width values from the median font are imported
and glyphs centered. The same kerning is imported to all. This
way there won't be text reflow.

● to work on layered fonts. The variation of sidebearing and
width values coming from one of the layers are imported into
all other fonts, thus preserving the relative position.

iKern output data can be imported into .vfb or UFO fonts.

Testing is done on hi-res displays, looking at test words. For a
final test, a slide show system shows words taken from database
files.

Words can be displayed in random order.

A temporary TrueType font can be installed on the system during
the work for testing it in an external application. Using the suffix
in the name system, it is also possible to map glyphs differently.
For example: small caps in place of the lowercase letters.

There's an option to modify the way that outlines are analyzed
after discretization, rotating the system of reference. It's used to
handle rotalic fonts.

That's all.

© 2016 Igino Marini. All rights reserved.

www.ikern.com

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24
	Pagina 25
	Pagina 26
	Pagina 27
	Pagina 28
	Pagina 29
	Pagina 30
	Pagina 31
	Pagina 32
	Pagina 33
	Pagina 34
	Pagina 35
	Pagina 36
	Pagina 37
	Pagina 38
	Pagina 39
	Pagina 40

